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bstract

he Sr2Ru1−xTixO4 solid solution with the K2NiO4-type structure has been prepared by a conventional solid-state reaction method. The lattice
onstants of Sr2Ru1−xTixO4 refined by the whole-powder-pattern-decomposition (WPPD) method have increased a-axis and decreased c-axis
ith the substitution of Ti4+ for Ru4+. The change from metal to semi-conducting behavior has been confirmed between x = 0.2 and 0.4. Seebeck

oefficient Q is positive for x = 0, 0.2, 0.4, 0.6 and 0.8. In addition, a large difference of Seebeck coefficient has been observed below 326.84 ◦C

etween x = 0.4 and 0.6. The electronic states of Sr2RuO4 have been covered to the Ru 4d state surrounding of Fermi level widely calculated by
V X� method. The energy band gap of Sr2TiO4 have observed between the O 2p state and Ti 3d state. The experimental conductive behavior has
een supported by DV X� simulation results.

2007 Elsevier Ltd. All rights reserved.
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. Introduction

The electrical properties of A2BO4 (B = transition metal ion),
2NiO4-type structure, have been well investigated for many

pplications such as electrodes, sensors, magnetism, optics,
tc.1–3 This structure possesses ABO3 (B = transition metal
on), perovskite-type, layers between rock-salt A–O layers,
–O–B interactions occurring only in the ab plane have been

nvestigated.4 The K2NiF4-type structure; Sr2RuO4 has also
een investigated as a spin-triplet unconventional supercon-
uctor with Tc ∼ −271.66 ◦C.5 Recently, it has been reported
hat the Sr2Ru1−xTixO4 solid solution, with the substitution of
on-magnetic Ti4+ (3d0) for Ru4+ (4d4) in Sr2RuO4, changes
rom spin-triplet superconductivity to magnetic ordering for
≥ 0.25.6,7 Polycrystalline samples of Sr2Ru1−xTixO4 with
omposition 0 ≤ x ≤ 1, on the other hand, have been synthesized
nd the electrical resistivities determined at room temperature.8

he electrical resistivities above room temperature, however,
ave not been clarified yet. In the perovskite-type SrRu1−yTiyO3

olid solution, it has been reported that a cubic to orthorhombic
ransition and a change from metal to semi-conducting behavior
ccurs between y = 0.40 and 0.50.9 In this study, structural and
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Thermal properties

hermal electric properties for the Sr2Ru1−xTixO4 solid solution
ere evaluated to clarify the relationship of both properties. In

ddition, the experimental results were supported by the calcula-
ion of electronic states of the end-members for Sr2Ru1−xTixO4
sing the first-principles DV X� method.

. Experimental

All samples were prepared by solid-state reaction method:
toichiometric amounts of strontium carbonate, ruthenium diox-
de and titanium dioxide were weighed out composition in the
ollowing stoichiometries, x = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, and
et mixed for 24 h. The dried mixture was then calcined at
000 ◦C for 24 h in air. These calcined powders were grounded
nd pressed into pellets with diameter, 12 mm. Subsequently the
ellets were sintered at 1350 ◦C for 24 h.8

Structural phase identification was conducted using X-ray
owder diffraction with an X’pert system using Cu K� radiation.
he lattice constants were refined by the whole-powder-
attern-decomposition (WPPD) program.10 The thermal electric
roperties, resistivity ρ and the Seebeck coefficient Q, were mea-
ured in a vacuum using the four-point DC method from room

emperature to 499.84 ◦C. Electrical contacts were made with
hin platinum wires and silver paint. First-principles molecular
rbital (MO) calculations were executed by the discrete varia-
ional X� (DV X�) method using program code SCAT11 in order

mailto:ohsato@mse.nitech.ac.jp
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Table 1
Structural information for Sr2RuO4 and Sr2TiO4 calculated using the DV X�

calculation (a) Sr2RuO4; (b) Sr2TiO4

Atom Valence state Wyckoff letter x y z

(a) Sr2RuO4, a = 3.871; c = 12.702
Sr 2 4e 0 0 0.3538
Ru 4 2a 0 0 0
O(1) −2 4c 0 0.5 0
O(2) −2 4e 0 0 0.1630

Atom Valence state Wyckoff letter x y z

(b) Sr2TiO4, a = 3.884; c = 12.6
Sr 2 4e 0 0 0.355
Ti 4 2a 0 0 0
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Fig. 2. Lattice constants of the Sr2Ru1−xTixO4 solid solution refined by the
WPPD method.
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O(1) −2 4c 0 0.5 0
O(2) −2 4e 0 0 0.152

o obtain the electronic states. The atomic positions in this study
re given in Table 1. They were generated and optimized by
olving the radial part for a given environment at each iteration
f the self-consistent calculation. [Sr8M5O42]−48 (M = Ti, Ru)
luster models were used for the calculations as shown in Fig. 1.
he cluster models assumed a coordination number 9 for Sr2+

nd 6 for M4+. In addition, a transition metal ion was replaced
n center position of the cluster. The Madelung field was applied
ver a large volume in order for atoms at edge to have an electro-
tatic environment similar to that of the core atoms, a Madelung
eld of 545 atoms was applied.

. Result and discussion

.1. The structural study

The XRD patterns show that the series forms a solid solution
ith the K2NiO4-type structure. The composition dependence

f the lattice constant of Sr2Ru1−xTixO4 refined by the WPPD
ethod is shown in Fig. 2. With the substitution of Ti4+

or Ru4+, the lattice constants exhibit an increased a-axis,
ecreased c-axis and cell volume. Due to the last that the

ig. 1. [Sr8M5O42]−48 cluster models (M = Ru, Ti) prepared for the DV X�

alculation.
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ig. 3. Arrhenius plots of electrical resistivity ρ for the Sr2Ru1−xTixO4 solid
olution measured from room temperature to 453.84 ◦C.

onic radius of Ti4+ (r = 0.605 Å, 6CN) is slightly smaller than
hat of Ru4+ (r = 0.620 Å 6CN). Although the perovskite-type
rRu1−yTiyO3 solid solution shows a clear transition from cubic

o orthorhombic between y = 0.40 and 0.50, the structural vari-
tion of Sr2Ru1−xTixO4 is not confirmed since there is only a
light variation of lattice constant. It is considered that crys-
al structures of the end-members for Sr2Ru1−xTixO4 are more
imilar than these of SrRu1−yTiyO3.

.2. Thermal electric properties of resistivity and Seebeck

oefficient

Fig. 3 shows the temperature dependence of the electri-
al resistivity, which was measured from room temperature to

ig. 4. Seebeck coefficient, Q, of the Sr2Ru1−xTixO4 solid solution measured
rom room temperature to 453.84 ◦C.
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Fig. 5. The electronic state diagrams of [Sr8Ru5O42]−48 cluster model calculated by the DV X� method. (a) Density of state (DOS); (b) energy level.
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Fig. 6. The electronic state diagrams of [Sr8Ti5O42]−48 cluster model ca

99.84 ◦C for the Sr2Ru1−xTixO4 with x = 0, 0.2, 0.4, 0.6 and
.8. Although the compounds in 0 ≤ x ≤ 0.2 exhibit metallic
ehavior, in 0.4 ≤ x ≤ 0.8 semi-conducting behavior is exhib-
ted. In addition, the resistivity of Sr2RuO4 (x = 0) is several
rders of magnitude lower than that of Sr2Ru0.8Ti0.2O4 (x = 0.2).
he compound Sr2TiO4 (x = 1.0) is an insulator. The change

rom metal to semi-conducting behavior for the Sr2Ru1−xTixO4
ccurs between x = 0.2 and 0.4. This metal-semi-conducting
ransition range coincides with the transition range from spin-
riplet superconductivity to magnetic ordering between x = 0.125
nd 0.25.6 Both transitions are likely to be related. The See-
eck coefficient Q, on the other hand, is positive for all
amples as shown in Fig. 4. In addition, a large difference
f Q in low temperature range was observed between x = 0.4
nd 0.6. It is considered that the appearance of a superstruc-
ure with insulating and conducting B–O–B layers in A2BO4

2NiO4-type structure occurs as substitution of Ti4+ for Ru4+

ear room temperature. Similar behavior has been observed in
uSr2GdCu2O8.12

.3. First-principle MO calculation by the DV Xα method

The electronic state diagrams for Sr2MO4 (M = Ru, Ti) shown
n Figs. 5 and 6 were obtained by first-principle calculation using

he DV X� method. The diagrams were plotted as Fermi level to
eV. The electric state diagrams of Sr2RuO4 were covered to the
u 4d state surrounding of Fermi level widely. On the other hand,

he energy band gap, Eg, of Sr2TiO4 was determined between

w
fi
m
m

ted by the DV X� method. (a) Density of state (DOS); (b) energy level.

he O 2p state and Ti 3d state. The calculation results correspond
o experimental results in which Sr2RuO4 and Sr2TiO4 exhibit

etallic and insulating behavior, respectively. In addition, the
lectrical resistivities for the Sr2Ru1−xTixO4 solid solution as
hown in Fig. 3 are also supported by both electric state dia-
rams. With increasing x, a band gap is induced to a shrunk
he Ru 4d state and to expand the Ti 3d state. It is speculated
hat the change from metal to semi-conducting behavior of the
r2Ru1−xTixO4 is due to the appearance of a band gap for in
ompositions 0.2 ≤ x ≤ 0.4. In addition, the energy levels of the
r and O orbitals are elevated due to the substitution of Ti4+ for
u4+.

. Conclusion

The lattice constants of the Sr2Ru1−xTixO4 solid solution
efined by the WPPD method exhibit an increased a-axis
nd decreased c-axis with the substitution of Ti4+ for Ru4+.
he change from metal to semi-conducting behavior for the
r2Ru1−xTixO4 was confirmed between x = 0.2 and 0.4. Com-
ounds of the Sr2Ru1−xTixO4 with x = 0, 0.2, 0.4, 0.6 and 0.8
ere confirmed to be p-type conductors by measurement of

he Seebeck coefficient. Large difference of Seebeck coefficient

as observed below 326.84 ◦C between x = 0.4 and 0.6. The
rst-principles molecular orbital (MO) calculations by DV X�
ethod were used for supporting electrical resistivity measure-
ents.
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